Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice

First Semester M.Tech. Degree Examination, June/July 2016 Advanced Mathematics

Time: 3 hrs.

Note: Answer any FIVE full questions.

Max. Marks: 100

14ELD11

- 1 a. Apply shifted QR algorithm to A and hence find eigen values of $A = \begin{pmatrix} 3 & 1 \\ 1 & 5 \end{pmatrix}$. (10 Marks)
 - b. Find the generalized inverse of,

$$A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6 \end{bmatrix}.$$
 (10 Marks)

- 2 a. Find the extremals of $\int_{1}^{2} \frac{\sqrt{1+y'^2}}{x} dx$ given that y(1) = 0, y(2) = 1. (10 Marks)
 - b. Find the path on which a particle in the absence of friction will slide from one point to another in shortest time under the action of gravity. (10 Marks)
- 3 a. Find a function y(x) for which $\int_0^1 x^2 + y'^2 dx$ is a stationary function given that, $\int_0^1 y^2 dx = 2, y(0) = 0, y(1) = 0.$ (10 Marks)
 - b. Find the distance between a parabola $y = x^2$ and a straight line x y = 5. (10 Marks)
- 4 a. A string is stretched between two points x = 0 and x = l. The motion is started by displacing the string in the form $u = \sin\left(\frac{\pi x}{l}\right)$, 0 < x < l and released from rest at t = 0. Find the displacement at any point of string at any time t. (10 Marks)
 - b. Solve the heat conduction equation, $K \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$, $-\infty < x < \infty$, t > 0 given that $u(x,t) \to 0$ as $x \to \pm \infty$ $u_x(x,t) \to 0$ as $x \to \pm \infty$ and u(x,0) = f(x), $-\infty < x < \infty$. (10 Marks)
- 5 a. Using Laplace transform method solve $u_{xx} = \frac{1}{C^2} u_{tt} \cos \omega t$, $0 < x < \infty$ given that u(0,t) = 0, u is bounded as $x \to \infty$, u(x,0) = 0, $u_{t}(x,0) = 0$, t > 0, $0 < x < \infty$. (10 Marks)
 - b. Find the temperature u(x, t) in a semi-infinite rod $0 < x < \infty$, t > 0 subject to u(x, 0) = 0 $0 < x < \infty$, $u_x(0, t) = -u_0$ (a constant) u(x, t) is bounded as $x \to \infty$. (10 Marks)
- 6 a. Solve $u_{xx} + u_{yy} = 0$, $x \ge 0$, $y \ge 0$ given that u(0, y) = 0, $u \& \frac{\partial u}{\partial x} \to 0$ as $x, y \to \infty$ and $u_y(x,0) = f(x)$.
 - b. Define harmonic function. If ϕ is a harmonic function in R and $\frac{\partial \phi}{\partial x} = 0$ on ∂R then show that ϕ is constant in \overline{R} .

14ELD11

- a. Use two phase simplex method to minimize $z = 7.5x_1 3x_2$, subject to $3x_1 x_2 x_3 \ge 3$, $x_1 - x_2 + x_3 \ge 2$, x_1 , x_2 , $x_3 \ge 0$. (10 Marks)
 - b. Use Lagrange's multipliers method to minimize $z = x_1^2 + x_2^2 + x_3^2$ subject to $x_1 + x_2 + 3x_3 = 2$, $5x_1 + 2x_2 + x_3 = 5$, $x_1, x_2, x_3 \ge 0$. (10 Marks)
- 8 a. Use dual simplex method to solve LPP,

Minimize $z = 2x_1 + 2x_2 + 4x_3$

Subject to $2x_1 + 3x_2 + 5x_3 \ge 2$

 $3x_1 + x_2 + 7x_3 \le 3$

 $x_1 + 4x_2 + 6x_3 \le 5$

 $x_1, x_2, x_3 \ge 0$

(10 Marks)

b. Use Kuhn-Tucker method to

Highly confidential document Line (192)

(10 Marks)